Benefits of Comprehensive Water-Quality and Hydrologic Monitoring for Upper Clear Creek Watershed Management

National Water Quality Monitoring Council (NWQMC), 11th National Monitoring Conference, Denver, Colorado, March 25-29, 2019

Presented By

Timothy D. Steele, Ph.D., TDS Consulting, and J. David Holm, Clear Creek Watershed Foundation, Denver, Colorado

TDSConsult@aol.com & jdavidholm@gmail.com

1994-2018 UCC Monitoring-Program Highlights

- Watershed Agreement included development and implementation of a watershed-wide "systematic" WQ & TMs monitoring programs.
- Water-quality data span a 25-year period of record; numerous monitoring sites are located at streamflow gaging stations. *SLCs*
- Trace-metals (TMs) data are available through the 8/16/18 sampling survey by USEPA-ESAT. Recent sampling-survey results are pending, and continuation of the program is assured through 9/19.
- TMs data have been extracted from the USEPA SCRIBE system and have been transcribed into the CDPHE-WQCD template. *CDSN*
- Special assessment studies include one for Stream Segment 2a (zinc loads) for CCWF and for an update of Cd concentrations and exceedances (UCCWA). Highlights are provided herein.
- The most recent 2018 UCC TMs Addendum for CCWF includes a subwatershed WQ assessment of Lion & North Empire Creeks.
- A preliminary evaluation of TMs-concentration time trends indicates patterns that differ from an earlier study using data for the Snake River, alluding to climate-change impacts (work in progress).

The "Maturing" of Water-Quality Monitoring Networks

Sources: CSU WQ Monitoring Short Course; Integrated Watershed Approaches – The 3M Concept

Upper Clear Creek Watershed – Monitoring Sites

Upper Clear Creek Watershed – Long-Term Trace-Metals Monitoring Program (showing Stream Segments)

Note: General monitoring-site configuration; not to scale

Upstream Part of Clear Creek Watershed,
Estimated Annual Mean Zinc Loads at
Key Water-Quality Monitoring Sites (Stream Segment 2a, 2010-2013 WYs)

Summary Statistics, D-Cd (ug/L), Upper Clear Creek Key TMs Monitoring Sites

Source: TDS Tech Memo to UCCWA, 11/20/2014.

Stream Segment	Site	Num- ber¹	Avg	85 th %	TVS(ch)	# Exceed- ances	TVS(ac)	HRD ²	HRD ³
2 a	CC13	38	0.83	1.32	0.34	32	2.15	75.8	64.7
2a	CC25	56	0.28	0.41	0.34	16	2.15	75.8	64.4
5	CC20	15	0.15	0.14	0.40	0	2.55	92.1	75.4
2b	CC26	44	0.26	0.36	0.34	10	2.14	75.4	72.2
9b ⁵	CC31	84	3.08	4.12	0.36	77	2.28	81.1	102
2c ⁵	CC34	54	0.41	0.65	0.37	27	2.34	83.5	69.6
11	CC40	87	0.55	0.86	0.41	43	2.67	96.9	73.2
13b	CC50	60	2.03	3.24	4.7 4	1	[3.40] 4	128	150
11	CC60	53	0.48	0.71	0.41	28	2.67	96.9	80.2

<u>Footnotes</u>: 1 Number of detectible concentrations, 2007-2014 (D-Cd < 0.2 ug/L).

2 Source: CDPHE-WQCD (2009), HRD (mg/L) for multiple sites in stream segment (SS). It is recommended that the table value standards (TVSs) calculated in 2009 for the WQCC RMH deliberations be updated.

3 Source: TMs data file, period of record, 2/1994-8/2014; except CC13>2/10; CC26 >4/98; CC31 >2/05. 4 Temporary modification, expiring 7/1/2015; TVS (ch) = 0.51 ug/L for SS 13b (with 50 exceedances).

5 Sites CC31 Trail Creek at mouth & CC34 Clear Creek above Chicago Creek are added for comparison.

Comparison of Annual Downstream UCC Watershed Zinc Loads, 1995-2014 (CC @ Kermitts vs. NFCC vs. CC near Golden)

Source: TDS Consulting (2018), 2018 TMs Addendum, draft report to CCWF

Upper Clear Creek Watershed Stream Standards TVS/Temp Mod Compliance Evaluation

TDS Tech Memo to UCCWA, June 6, 2014

Stream Segment	Hardness mg/L, (N=)	Dissolved Trace Metal	# data values	85 %ile	TVS (ac), ug/L	TVS (ch), ug/L	Temp Mod, ug/L
2 a	74 (114)	Cadmium	100	1.18	1.3	0.34	1.54 (ch)
2a	74 (114)	Zinc	130	258	270	236	586 (ac)/353 (ch)
2 c	73 (137)	Copper	81	7.93	10	6.8	11.4 (ch)
9a	29 (77)	Copper	54	7.76	4.2	3.1	9.6 (ch)
11	96 (202)	Cadmium	150	0.838	2.6	0.31	1.42 (ch)

Importance of Continued Water-Quality Monitoring

Site CC-25, what happened during two recent sampling surveys? "WWTP Hiccup?"

Now to go back to the beginning......

- Seasonal characterization (including extreme values) is "lost" by reducing frequency of sampling/analyses to twice per year (such as high/low flow).
- Time trends may occur even higher up in the watershed (near headwaters); thus, supporting the continuation of WQ monitoring data.
- Further assessment of the available data (all sources) is warranted!

Seasonal time trends due to climate change?

Clear Creek (to the left)
Indicates decreasing
zinc concentrations;
whereas, the Snake
River (below; west
"over the Continental
Divide") indicates
increases in zinc
concentrations.

Snake River Watershed ----

Sources: Steele et al. 2010; 2015); Todd et al. (2012; 2013) & UCC & Snake River watersheds' databases.

More than Two Decades of Investigations for Evaluating Conditions and Changes, Upper Clear Creek Watershed

• 1994-2015(+)

Parties to the Clear Creek Watershed Management Agreement

MUNICIPALITIES

COUNTIES/GOVERNMENT

INDUSTRY/IRRIGATION

Westminster

Jefferson County

Phelps Dodge

Thornton

Clear Creek County

(Cyprus/Amax)

Northglenn

Gilpin County

Clear Creek Ski Corp.

Idaho Springs

St. Mary's Glacier W&S

Farmers' High Line

Georgetown

Black Hawk/Central City W&S

FRICO

Empire

Central Clear Creek W&S

Church Ditch

Black Hawk

Colorado Dept. of Transportation

Central City

Jefferson Center Metro District

Arvada

Golden

UPPER CLEAR CREEK WATERSHED ASSOCIATION

Upper Clear Creek Watershed with Canal-Diversion Flows into Standley Lake

Shift in Chlorophyll-a vs. Total-Phosphorus Pattern

Downstream Standley Lake Chlorophyll-a Rolling-Average Concentrations vs. Action Threshold/Standard

Source of data: Standley Lake Cities (Westminster, Northglenn, Thornton)

Importance of Data-Source Comparisons

UCCWA-SLCs POR Average T- P is 40 percent lower than for CDH-WQCD (0.027 mg/L vs. 0.45 mg/L)

Figure 3 -- Clear Creek near Golden, Total-Phosphorus Concentrations, February 1994-August 2000, WQCD vs. UCCWA-SLCs Data Comparison

Seasonal DO Characterization of Clear Creek 26 years of field measurements during sampling surveys

Stream Temperature – An "Emerging" Water-Quality Variable of Concern

Measurement Date

Clear Creek at Lawson (CC-26),
Water-Temperature Time Series, JanuaryDecember (2005-2013 POR)

Clear Creek at Lawson (CC-26), Temperature Time Series (1998-2013) [Combined with AS-sample results]

Comments:

- More data may not always provide "better" information (characterization/statistics).
- 2. Time trends are period-of-record dependent.
- 3. Comparisons with different data sources are useful.
- Seasonal characterization can be "captured" via a simple harmonic function (next).

Stream Temperatures Seasonal Characterization

[Ward (1963); Collins (1969); Steele (1974; 1985); Shampine (1977); Wentz and Steele (1976); Clement (1978)]

FIGURE 2.—Typical harmonic-fitted temperature graph showing mean stream-temperature curve, for station 12-0830, Mineral Creek near Mineral.

Figure 2a, - Seasonal temperature pattern, Yampa River near Maybell, Colo., 1963 water year.

UPPER CLEAR CREEK WATERSHED

INTEGRATED HYDROLOGIC & WATER-QUALITY MONITORING —

Conceptual-Design Guidelines

Source: SLCs PP presentation, 2008.

Draft Prepared by

Timothy D. Steele, with Assistance from Max Dodson

n behalf of

Clear Creek Watershed Foundation and

Upper Clear Creek Watershed Association

TDS Project No. 0411-11X

April 11, 2012 (version R4)

Tabulation of UCC WQ Model Applications

- 1994 CDM water-management study (CDM/RBD)
- 1994-1998 QUAL2E studies (DRCOG, HIS Geotrans; TDS Consulting
- 1995-1999 -- Meta4-WASP4 (Al Medine, USEPA-Cincinnati)
- 2002+ -- TMDL assessments (CDPHE-WQCD)
- 2003 TPLoad (USEPA BASINS tool set, Clear Creek Consultants)
- 2001-2006 WARMF (watershed & lake) (SLCs)
- "Black-Box" Models:
 - Trace-metals loads assessment (2000-2014 & 2018) annual addenda
 - Harmonic analysis of stream (water) temperatures

Acknowledgments TDS' Clear Creek watershed involvement

UPPER CLEAR CREEK
WATERSHED ASSOCIATION

- U.S. Environmental Protection Agency
- U.S. Geological Survey, Water Resources Division
- Colorado Department of Environmental Health & Environment
 - Hazardous Materials & Waste Division
 - Water Quality Control Division
- Clear Creek County
- Adams County
- Town of Georgetown
- City of Black Hawk
- City of Golden
- Standley Lake Cities (SLCs)
 - City of Westminster
- Consultants
 - Balloffet and Associates, Inc. [Town of Empire]
 - Leonard Rice Water Engineers [Black Hawk]
 - Clear Creek Consultants [Hoop Creek studies]
- Climax Molybdenum Company (previously Cyprus Amax; now a Freeport McMoran company)

Questions

FINAL REPORT UPPER CLEAR CREEK BASIN/STANDLEY LAKE WATER-QUALITY ASSESSMENT

Prepared for

Upper Clear Creek Basin Association c/o City of Idaho Springs 1711 Miner Street, Box 907 Idaho Springs, CO 80452

Prepared by

Advanced Sciences, Inc. 405 Urban Street, Suite 401 Lakewood, CO 80228-1236

UPPER CLEAR CREEK WATERSHED TRACE-METALS DATA ASSESSMENT

With Focus on Lion Creek-North Empire Creek Impacts on West Fork Clear Creek

2018 Addendum and Technical Memorandum

Prepared For: Clear Creek Watershed Foundation P.O. Box 1963 Idaho Springs, CO 80452

On Behalf of:
Colorado Department of Health & Environment, Water Quality Control Division, and
U.S. Environmental Protection Agency

Prepared by:

Timothy D. Steele, Ph.D. TDS Consulting 783 Lafayette Street Denver, Colorado 80218-3502 J. David Holm, P.E. Executive Director, CCWF 4015 Wyandot Street Denver, Colorado 80211

TDS Project Number 0411-18X

February 6, 2019

Supplemental slides – not included in presentation

Upper Clear Creek Watershed Stream Segment 2a – Zinc Loads Assessment

Figure 1 – Upper Part of Clear Creek Watershed, Key Water-Quality Monitoring Sites (Stream Segment 2a)

Source: TDS Tech Memo to CCWF, June 19, 2014.

Site/Variable	CC-05	CC-12	CC-09	CC-10	CC-13	CC-25
Streamflow (Q), cfs	38.3	50.0	10.0	12.1	74.0	76.0
Q, period of record	Sampling- surveys	No data	1995-97	1995-97	1998-2013	1995-2013
Zinc concen- tration, ug/L*	20.4	276	170	73.3	234	129 [157]#
D-Zn, period of record	1994-2009	2011-2013	1999-2007	1994-2007	8/97-8/98, 2010-13	1995-2013
Zinc load, lbs/y	1,649	21,355	2657	2051	26,064	15,252

Notes: Average zinc concentrations were obtained through interpolation of period-of-record data. However, for site CC-12, the value indicated is for an average of 16 analyses over the past three years. # =1994-2013 POR (19.years).

Upper Clear Creek Watershed, Colorado

Example – Time-Varying Minimum Detection Limits

Pitfall of Blending in Automatic-Sampler Water-Temperature Values with Ambient Field Data

